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Conversion Table

(Conversion factors for U.S. customary to
metric (SI) units of measurement)

To Convert From To Multiply By

angstrom meters (m) 1.000 000 x E-10

atmosphere (normal) kilo pascal (kPa) 1.013 25 x E+2

bar kilo pascal (kPa) 1.000 000 x E+2

barn meter (mi) 1.000 000 x E-28

British thermal unit
(thermochemical) joule (J) 1 054 350 x E+3

cal (thermochemical)/cm 2  mega joule/m2 (MJ/m 2) 4.184 000 x E-2

calorie (thermochemical) joule (J) 4.184 000

calorie (thermochemical)/g joule per kilogram (J/kg) 4.184 000 x E+3

curie giga becquerel (GBq) 3.700 000 x E+1

degree Celsius degree kelvin (K) tc =t + 273.15

degree (angle) radian (rad) 1.745 329 x E-2

degree Fahrenheit degree kelvin (K) t= (t- + 459.67)/1.8

electron volt joule (J) 1.602 19 x E-19

erg joule (J) 1.000 000 x E-7

erg/second watt (W) 1.000 000 x E-7

foot meter (m) 3.048 000 x E-1

foot-pound-force joule (J) 1.355 818

gallon (U.S. liquid) meter' (m3) 3.785 412 x E-3

inch meter (m) 2.540 000 x E-2

jerk joule (J) 1.000 000 x E+9

joule/kilogram (Jikg)
(radiation dose absorbed) gray (Gy) 1.000 000

kilotons terajoules 4.183

kip (1000 Ibf) newton (N) 4.448 222 x E+3

kip/inch2 (ksi) kilo pascal (kPa) 6.894 757 x E+3

ktap newton-second/m 2 (N-s/M2) 1.000 000 x E+2

micron meter (in) 1.000 000 x E-6
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Conversion Table (Concluded)

To Convert From To Multiply By

mil meter (m) 2.540 000 x E-5

mile (international) meter (m) 1.609 344 x E+3

ounce kilogram (kg) 2.834 952 x E-2

pound-force
(lbf avoirdupois) newton (N) 4.448 222

pound-force inch newton-meter (N.m) 1.129 848 x E-1

pound-toice/inch newton/meter (N/m) 1.751 268 x E+2

pound-force/foot 2  kilo pascal (kPa) 4.788 026 x E-2

pound-force/inch 2 (psi) kilo pascal (kPa) 6.894 757

pound-mass
(Ibm avoirdupois) kilogram (kg) 4.535 924 x E-i

pound-mass-foot'
(moment of inertia) kilogram-meter2 (kg.m 2) 4.214 011 x E-2

pound-mass/foot 3  kilogram-meter' (kg/m) 1.601 846 x E+1
rad (radiation dose

absorbed) gray (Gy) 1.000 000 x E-2

roentgen coulomb/kilogram (C/kg) 2.579 760 x E-4

shake second (s) 1.000 000 x E-8

slug kilogram (kg) 1.459 390 x E+I

ton- (mm Hg, 0C) kilo pascal (kPa) 1.333 22 x E-1
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SECTION 1

RADIATIVE PROPERTIES OF UO

An analysis of the electronic structure UO. but still well within the uncertainty of
of UO and UO+ using a relativistic formu- the several calculations.
lation has been undertaken (References 1
and 2). Preliminary calculations were per- A perturbative treatment for calculat-

formed for several states of UO and UO' ing the density of states in uranium mole-

and for the ground and excited states of cules is available through the use of iigand

UO= *. In addition, an analysis of the field theory. Recent studies by Dulick
electronic structure of the ground state of (Reference 6) predict that the ground state

TiO indicated the unexpected result that of UO* has n = 9/2. in contrast to the
this system is a weak LWIR radiator. effective core hamiltonian calcu- lations of
Finally. a data base for U o. U'l and U 2 has Krauss and Stevens (Reference 5) and our

been collected for examining the role of relativistic density functional calculation,.
dielectronic recombination as a charge both of which predict that the ground state
neutralization mechanism in the uranium/ has n = 9/2. Again, the neglect of important
oxygen system (Reference 3). A brief molecular effects in the ligand field model
summary of the results of our UO' calcu- apparently results in a bias toward lower 02

lations performed to date follows, values.

An analysis of the emission character-
Detailed searches of several sym- istics for the ground state of UO' indicater

metries of UO' were carried out to an oscillator strength for emission (flo) of
determine the ground molecular state of 5.17 x 0- 5 at x = 11.3 g±. A complete anal-
this system. Our calculations indicate that ysis of our calculated LWIR emission for
the lowest symmetry of UO + is derived UO' was given in DNA TR-82-159. Our
from the (,\, S) coupled 41 state. A calculated LWIR emission for UO+ is
vibrational analysis of the 0 = 9/2 ground typical of that for a highly ionic metal
state of UO' was carried out using a oxide. We predict strong emission from the
Hulbert-Hirschfelder (Reference 4) fit to fundamentals of UO' in the wavelength
our calculated potential curves. The region 11 - 14 g. Since this system exhibits
spin-orbit splittings were derived from weak anharmonicity, we find the overtones
atomic parameters for the U ion. This fit down in intensity by several orders of
yields an equilibrium internuclear distance magnitude. However, the first excited state
of 1.84 A and a fundamental vibrational of UO (0H) lies at - 1200 cm- 1 in our
constant of 890 cm- . These data are calculations with a predicted electronic
compared with other calculated estimates, oscillator strength of - I x 10- 5 for the "1 -
since there are no experimental data 4H transition. The electronic and vibra-
available. The agreement between our work tional manifolds for UO" are thus highly
and that of Krauss and Stevens (Reference overlapped above the second vibrational
5) is less satisfactory than in the case of level of the ground 519,2 state.



A summary of the ele'tronic states of excited state, but the transition moment is
UO" that have been studied. both at NBS weak since this is an f-s excitation on
(Krauss and Stevens) and at UTRC, is uranium.
shown in Fig. 1. We find (to date) nine
electronic states lying in the region .4-.8p In both the UTRC and NBS studies, a
that are strongly connected to either the very low-lying 'H excited state is found at
ground 'I manifold or to the low-lying 41-1 Te - 1200 cm-'. Since this state may be
manifold of UO . The calculated f- thermally populated at short time condi-
numbers for the bands 141 .- 14 K. Rii tions, the oscillator strengths coupling this
34 H. 1!-. 24 H and i41 -, 14H are given in 14H state to the known six low-lvine ex-
Tables 1. 2. 3, and 4 respectively. We find a cited states of UO* have been examined.
considerable shift in Re for the 34 H state
which offers a route for solar excitation
followed by IR radiation. We also show in The calculated oscillator strength- are
Table 4 the IR absorption corresponding to given in Tables 8 - 13. respecti~elv. for the

the 141 -. 14H transition. Owing to the transitions: 14H-- 2l. 14H - 2 H. I-H -

vertical nature of the potential curves, this I K, 14H - 16 H. 14H - 34 H. and 14H --,'.

behaves similar to a weak vibrational tran- The transitions to the 14 K. l"H and 3I.

sition. show strong oscillator strengths owi ng to
the shifted R. for the excited states. The

The photoabsorption strengths for the overall pattern of solar pumping from the
141 - 241, 141 -. 1H. and 141 - 341 transi- 1"H state is thus very similar to that from
tions are presented in Tables 5 - 7, respec- the ground 14I state.
tively. We find that the 11 -. 241 oscillator
strengths are large but that most of the Since the density of electronic state, of
absorbed energy will be reradiated in the UO' is large above - 2.0 eV. we predict
visible since the transition is nearly vertical, that strong solar pumping. followed by both

In contrast, the 111 -. I H transition LWIR and visible radiation should occur for
(Table 6) is an important route for con- this system, This conclusion is similar to
version of solar to IR photons, since the that reached by Krauss and Stevens (Ref-

oscillator strength is large and the R, of the erence 5) based on their MCSCF analysis
excited state is shifted. This transition is of the UO system. Since several excited

not as strong as the 141 - 34 H transition electronic states of UO lying in the region
reported previously, but is a contributing of strong solar flux (.4 - .8 ji., exhibit

factor in the total photoabsorption profile. shifted equilibrium internuclear separation
from that of the ground 41 state, we predict

The I'i -, 341 transition. shown in efficient conversion of solar photons to IR
Table 7, reflects the large shift in R, for the photons for this system.
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